-->

Navigation List

UJI NORMALITAS REGRESI


Uji normalitas pada model regresi digunakan untuk menguji apakah nilai residual yang dihasilkan dari regresi terdistribusi secara normal atau tidak. Model regresi yang baik yaitu yang memiliki nilai residual yang terdistribusi secara normal. Beberapa metode uji normalitas yaitu dengan melihat penyebaran data pada sumber diagonal pada grafik Normal P-P Plot of regression standardized residual atau dengan uji One Sample Kolmogorov Smirnov. Berikut pembahasannya:

Contoh kasus:
Akan dilakukan analisis regresi untuk mengatahui pengaruh biaya produksi, distribusi, dan promosi terhadap tingkat penjualan. sebelumnya akan dilakukan uji normalitas pada model regresi untuk mengetahui apakah residual terdistribusi normal atau tidak. Data menyerupai berikut:

Tahun
Tingkat penjualan
Biaya produksi
Biaya distribusi
Biaya promosi
1996
127300000
37800000
11700000
8700000
1997
122500000
38100000
10900000
8300000
1998
146800000
42900000
11200000
9000000
1999
159200000
45200000
14800000
9600000
2000
171800000
48400000
12300000
9800000
2001
176600000
49200000
16800000
9200000
2002
193500000
48700000
19400000
12000000
2003
189300000
48300000
20500000
12700000
2004
224500000
50300000
19400000
14000000
2005
239100000
55800000
20200000
17300000
2006
257300000
56800000
18600000
18800000
2007
269200000
55900000
21800000
21500000
2008
308200000
59300000
24900000
21700000
2009
358800000
62900000
24300000
25900000
2010
362500000
60500000
22600000
27400000



1)   Metode grafik
Uji normalitas residual dengan metode grafik yaitu dengan melihat penyebaran data pada sumber diagonal pada grafik Normal P-P Plot of regression standardized residual. Sebagai dasar pengambilan keputusannya, bila titik-titik menyebar sekitar garis dan mengikuti garis diagonal maka nilai residual tersebut telah normal.
Langkah-langkah analisis pada SPSS sebagai berikut:
-       Inputkan data pada SPSS 
- Untuk analisis data, klik menu Analyze >> Regression >> Linear       
-       Pada kotak dialog Linear Regression, masukkan variabel Tingkat penjualan ke kotak Dependent, kemudian masukkan variabel Biaya produksi, Biaya distribusi, dan Biaya promosi ke kotak Independent(s).
-          Klik tombol Plots, kemudian terbuka kotak dialog Linear Regression: Plots.
-          Beri tanda centang pada ‘Normal probability plot’, kemudian klik tombol Continue. Akan kembali ke kotak dialog sebelumnya, klik tombol OK. Maka hasil grafik Normal P-P Plot menyerupai berikut:


Dari gambar grafik di atas dapat diketahui bahwa titik-titik menyebar sekitar garis dan mengikuti garis diagonal maka nilai residual tersebut telah normal.

2)   Metode statistik One Sample Kolmogorov Smirnov
Uji One Sample Kolomogorov Smirnov digunakan untuk mengetahui distribusi data, apakah mengikuti distribusi normal, poisson, uniform, atau exponential. Dalam hal ini untuk mengetahui apakah distribusi residual terdistribusi normal atau tidak. Residual berdistribusi normal bila nilai signifikansi lebih dari 0,05.
Langkah-langkah analisis pada SPSS sebagai berikut:
-       Inputkan data di SPSS 
-       Langkah pertama yaitu mencari nilai residual, caranya klik Analyze >> Regression >> Linear        
-       Pada kotak dialog Linear Regression, masukkan variabel Tingkat penjualan ke kotak Dependent, kemudian masukkan variabel Biaya produksi, Biaya distribusi, dan Biaya promosi ke kotak Independent(s).
- Klik tombol Save, selanjutnya akan terbuka kotak dialog ‘Linear Regression: Save’
-          Pada Residuals, beri tanda centang pada ‘Unstandardized’. Kemudian klik tombol Continue. Akan kembali ke kotak dialog sebelumnya, klik tombol OK. Hiraukan hasil output SPSS, Anda buka input data di halaman Data View, disini akan bertambah satu variabel yaitu residual (RES_1).
 - Langkah selanjutnya melaksanakan uji normalitas residual, caranya klik Analyze >> Non Parametric tests >> Legacy Dialogs >> 1-Sample K-S.
-       Selanjutnya akan terbuka kotak dialog ‘One Sample Kolmogorov Smirnov Test’ menyerupai berikut:
-       Masukkan variabel Unstandardized Residual(RES 1) ke kotak Test Variable List. Pada Test Distribution, pastikan terpilih Normal. Jika sudah klik tombol OK. Akan kembali ke kotak dialog sebelumnya. Klik OK, maka hasil output menyerupai berikut:


    Dari output di atas dapat diketahui bahwa nilai signifikansi (Asymp.Sig 2-tailed) sebesar 0,631. Karena signifikansi lebih dari 0,05 (0,631 > 0,05), maka nilai residual tersebut telah normal. 
 




Related Posts