ANALISIS REGRESI LINIER BERGANDA
9.17.2017
Analisis regresi linier berganda ialah hubungan secara linear antara dua atau lebih variabel independen (X1, X2,….Xn) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah masing-masing variabel independen berafiliasi konkret atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan. Data yang digunakan biasanya berskala interval atau rasio.
Persamaan regresi linear berganda sebagai berikut:
Y’ = a + b1X1+ b2X2+…..+ bnXn
Keterangan:
Y’ = Variabel dependen (nilai yang diprediksikan)
X1 dan X2 = Variabel independen
a = Konstanta (nilai Y’ apabila X1, X2…..Xn = 0)
b = Koefisien regresi (nilai peningkatan ataupun penurunan)
Contoh kasus:
Kita mengambil pola kasus pada uji normalitas, yaitu sebagai berikut: Seorang mahasiswa berjulukan Bambang melaksanakan penelitian wacana faktor-faktor yang mensugesti harga saham pada perusahaan di BEJ. Bambang dalam penelitiannya ingin mengetahui hubungan antara rasio keuangan PER dan ROI terhadap harga saham. Dengan ini Bambang menganalisis dengan tunjangan jadwal SPSS dengan alat analisis regresi linear berganda. Dari uraian di atas maka didapat variabel dependen (Y) ialah harga saham, sedangkan variabel independen (X1 dan X2) ialah PER dan ROI.
Data-data yang di dapat berupa data rasio dan ditabulasikan sebagai berikut:
Tabel. Tabulasi Data (Data Fiktif)
Tahun | Harga Saham (Rp) | PER (%) | ROI (%) |
1990 | 8300 | 4.90 | 6.47 |
1991 | 7500 | 3.28 | 3.14 |
1992 | 8950 | 5.05 | 5.00 |
1993 | 8250 | 4.00 | 4.75 |
1994 | 9000 | 5.97 | 6.23 |
1995 | 8750 | 4.24 | 6.03 |
1996 | 10000 | 8.00 | 8.75 |
1997 | 8200 | 7.45 | 7.72 |
1998 | 8300 | 7.47 | 8.00 |
1999 | 10900 | 12.68 | 10.40 |
2000 | 12800 | 14.45 | 12.42 |
2001 | 9450 | 10.50 | 8.62 |
2002 | 13000 | 17.24 | 12.07 |
2003 | 8000 | 15.56 | 5.83 |
2004 | 6500 | 10.85 | 5.20 |
2005 | 9000 | 16.56 | 8.53 |
2006 | 7600 | 13.24 | 7.37 |
2007 | 10200 | 16.98 | 9.38 |
Langkah-langkah pada jadwal SPSS
Ø Masuk jadwal SPSS
Ø Klik variable view pada SPSS data editor
Ø Pada kolom Name ketik y, kolom Name pada baris kedua ketik x1, kemudian untuk baris kedua ketik x2.
Ø Pada kolom Label, untuk kolom pada baris pertama ketik Harga Saham, untuk kolom pada baris kedua ketik PER, kemudian pada baris ketiga ketik ROI.
Ø Untuk kolom-kolom lainnya boleh dihiraukan (isian default)
Ø Buka data view pada SPSS data editor, maka didapat kolom variabel y, x1, dan x2.
Ø Ketikkan data sesuai dengan variabelnya
Ø Klik Analyze - Regression - Linear
Ø Klik variabel Harga Saham dan masukkan ke kotak Dependent, kemudian klik variabel PER dan ROI kemudian masukkan ke kotak Independent.
Ø Klik Statistics, klik Casewise diagnostics, klik All cases. Klik Continue
Ø Klik OK, maka hasil output yang didapat pada kolom Coefficients dan Casewise diagnostics ialah sebagai berikut:
Tabel. Hasil Analisis Regresi Linear Berganda
Persamaan regresinya sebagai berikut:
Y’ = a + b1X1+ b2X2
Y’ = 4662,491 + (-74,482)X1 + 692,107X2
Y’ = 4662,491 - 74,482X1 + 692,107X2
Keterangan:
Y’ = Harga saham yang diprediksi (Rp)
a = konstanta
b1,b2 = koefisien regresi
X1 = PER (%)
X2 = ROI (%)
Persamaan regresi di atas dapat dijelaskan sebagai berikut:
- Konstanta sebesar 4662,491; artinya kalau PER (X1) dan ROI (X2) nilainya ialah 0, maka harga saham (Y’) nilainya ialah Rp.4662,491.
- Koefisien regresi variabel PER (X1) sebesar -74,482; artinya kalau variabel independen lain nilainya tetap dan PER mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami penurunan sebesar Rp.74,482. Koefisien bernilai negatif artinya terjadi hubungan negatif antara PER dengan harga saham, semakin naik PER maka semakin turun harga saham.
- Koefisien regresi variabel ROI (X2) sebesar 692,107; artinya kalau variabel independen lain nilainya tetap dan ROI mengalami kenaikan 1%, maka harga saham (Y’) akan mengalami peningkatan sebesar Rp.692,107. Koefisien bernilai konkret artinya terjadi hubungan konkret antara ROI dengan harga saham, semakin naik ROI maka semakin meningkat harga saham.
Nilai harga saham yang diprediksi (Y’) dapat dilihat pada tabel Casewise Diagnostics (kolom Predicted Value). Sedangkan Residual (unstandardized residual) ialah selisih antara harga saham dengan Predicted Value, dan Std. Residual (standardized residual) ialah nilai residual yang telah terstandarisasi (nilai semakin mendekati 0 maka model regresi semakin baik dalam melaksanakan prediksi, sebaliknya semakin menjauhi 0 atau lebih dari 1 atau -1 maka semakin tidak baik model regresi dalam melaksanakan prediksi).
A. Analisis Korelasi Ganda (R)
Analisis ini digunakan untuk mengetahui hubungan antara dua atau lebih variabel independen (X1, X2,…Xn) terhadap variabel dependen (Y) secara serentak. Koefisien ini menunjukkan seberapa besar hubungan yang terjadi antara variabel independen (X1, X2,……Xn) secara serentak terhadap variabel dependen (Y). nilai R berkisar antara 0 hingga 1, nilai semakin mendekati 1 berarti hubungan yang terjadi semakin kuat, sebaliknya nilai semakin mendekati 0 maka hubungan yang terjadi semakin lemah.
Menurut Sugiyono (2007) pemikiran untuk menawarkan interpretasi koefisien korelasi sebagai berikut:
0,00 - 0,199 = sangat rendah
0,20 - 0,399 = rendah
0,40 - 0,599 = sedang
0,60 - 0,799 = kuat
0,80 - 1,000 = sangat kuat
Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut:
Tabel. Hasil analisis korelasi ganda
Berdasarkan tabel di atas diperoleh angka R sebesar 0,879. Hal ini menunjukkan bahwa terjadi hubungan yang sangat kuat antara PER dan ROI terhadap harga saham.
B. Analisis Determinasi (R2)
Analisis determinasi dalam regresi linear berganda digunakan untuk mengetahui prosentase sumbangan pengaruh variabel independen (X1, X2,……Xn) secara serentak terhadap variabel dependen (Y). Koefisien ini menunjukkan seberapa besar prosentase variasi variabel independen yang digunakan dalam model bisa menjelaskan variasi variabel dependen. R2 sama dengan 0, maka tidak ada sedikitpun prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen, atau variasi variabel independen yang digunakan dalam model tidak menjelaskan sedikitpun variasi variabel dependen. Sebaliknya R2 sama dengan 1, maka prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen ialah sempurna, atau variasi variabel independen yang digunakan dalam model menjelaskan 100% variasi variabel dependen.
Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut:
Tabel. Hasil analisis determinasi
Berdasarkan tabel di atas diperoleh angka R2 (R Square) sebesar 0,772 atau (77,2%). Hal ini menunjukkan bahwa prosentase sumbangan pengaruh variabel independen (PER dan ROI) terhadap variabel dependen (harga saham) sebesar 77,2%. Atau variasi variabel independen yang digunakan dalam model (PER dan ROI) bisa menjelaskan sebesar 77,2% variasi variabel dependen (harga saham). Sedangkan sisanya sebesar 22,8% dipengaruhi atau dijelaskan oleh variabel lain yang tidak dimasukkan dalam model penelitian ini.
Adjusted R Square ialah nilai R Square yang telah disesuaikan, nilai ini selalu lebih kecil dari R Square dan angka ini bisa memiliki harga negatif. Menurut Santoso (2001) bahwa untuk regresi dengan lebih dari dua variabel bebas digunakan Adjusted R2 sebagai koefisien determinasi.
Standard Error of the Estimate ialah suatu ukuran banyaknya kesalahan model regresi dalam memprediksikan nilai Y. Dari hasil regresi di dapat nilai 870,80 atau Rp.870,80 (satuan harga saham), hal ini berarti banyaknya kesalahan dalam prediksi harga saham sebesar Rp.870,80. Sebagai pemikiran kalau Standard error of the estimate kurang dari standar deviasi Y, maka model regresi semakin baik dalam memprediksi nilai Y.
C. Uji Koefisien Regresi Secara Bersama-sama (Uji F)
Uji ini digunakan untuk mengetahui apakah variabel independen (X1,X2….Xn) secara bantu-membantu kuat secara signifikan terhadap variabel dependen (Y). Atau untuk mengetahui apakah model regresi dapat digunakan untuk memprediksi variabel dependen atau tidak. Signifikan berarti hubungan yang terjadi dapat berlaku untuk populasi (dapat digeneralisasikan), misalnya dari kasus di atas populasinya ialah 50 perusahaan dan sampel yang diambil dari kasus di atas 18 perusahaan, jadi apakah pengaruh yang terjadi atau kesimpulan yang didapat berlaku untuk populasi yang berjumlah 50 perusahaan.
Dari hasil output analisis regresi dapat diketahui nilai F ibarat pada tabel 2 berikut ini.
Tabel. Hasil Uji F
Tahap-tahap untuk melaksanakan uji F ialah sebagai berikut:
1. Merumuskan Hipotesis
Ho : Tidak ada pengaruh secara signifikan antara PER dan ROI secara bantu-membantu terhadap harga saham.
Ha : Ada pengaruh secara signifikan antara PER dan ROI secara bantu-membantu terhadap harga saham.
2. Menentukan tingkat signifikansi
Tingkat signifikansi menggunakan a = 5% (signifikansi 5% atau 0,05 ialah ukuran standar yang sering digunakan dalam penelitian)
3. Menentukan F hitung
Berdasarkan tabel diperoleh F hitung sebesar 25,465
4. Menentukan F tabel
Dengan menggunakan tingkat keyakinan 95%, a = 5%, df 1 (jumlah variabel–1) = 2, dan df 2 (n-k-1) atau 18-2-1 = 15 (n ialah jumlah kasus dan k ialah jumlah variabel independen), hasil diperoleh untuk F tabel sebesar 3,683 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =finv(0.05,2,15) lalu enter.
5. Kriteria pengujian
- Ho diterima bila F hitung < F tabel
- Ho ditolak bila F hitung > F tabel
6. Membandingkan F hitung dengan F tabel.
Nilai F hitung > F tabel (25,465 > 3,683), maka Ho ditolak.
7. Kesimpulan
Karena F hitung > F tabel (25,465 > 3,683), maka Ho ditolak, artinya ada pengaruh secara signifikan antara price earning ratio (PER) dan return on investmen (ROI) secara bantu-membantu terhadap terhadap harga saham. Makara dari kasus ini dapat disimpulkan bahwa PER dan ROI secara bantu-membantu kuat terhadap harga saham pada perusahaan di BEJ.
D. Uji Koefisien Regresi Secara Parsial (Uji t)
Uji ini digunakan untuk mengetahui apakah dalam model regresi variabel independen (X1, X2,…..Xn) secara parsial kuat signifikan terhadap variabel dependen (Y).
Dari hasil analisis regresi output dapat disajikan sebagai berikut:
Tabel. Uji t
Langkah-langkah pengujian sebagai berikut:
Pengujian koefisien regresi variabel PER
1. Menentukan Hipotesis
Ho : Secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham.
Ha : Secara parsial ada pengaruh signifikan antara PER dengan harga saham
2. Menentukan tingkat signifikansi
Tingkat signifikansi menggunakan a = 5%
3. Menentukan t hitung
Berdasarkan tabel diperoleh t hitung sebesar -1,259
4. Menentukan t tabel
Tabel distribusi t dicari pada a = 5% : 2 = 2,5% (uji 2 sisi) dengan derajat kebebasan (df) n-k-1 atau 18-2-1 = 15 (n ialah jumlah kasus dan k ialah jumlah variabel independen). Dengan pengujian 2 sisi (signifikansi = 0,025) hasil diperoleh untuk t tabel sebesar 2,131 (Lihat pada lampiran) atau dapat dicari di Ms Excel dengan cara pada cell kosong ketik =tinv(0.05,15) lalu enter.
5. Kriteria Pengujian
Ho diterima kalau -t tabel < t hitung < t tabel
Ho ditolak kalau -t hitung < -t tabel atau t hitung > t tabel
6. Membandingkan thitung dengan t tabel
Nilai -t hitung > -t tabel (-1,259 > -2,131) maka Ho diterima
7. Kesimpulan
Oleh sebab nilai -t hitung > -t tabel (-1,259 > -2,131) maka Ho diterima, artinya secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham. Makara dari kasus ini dapat disimpulkan bahwa secara parsial PER tidak kuat terhadap harga saham pada perusahaan di BEJ.
Pengujian koefisien regresi variabel ROI
1. Menentukan Hipotesis
Ho : Secara parsial tidak ada pengaruh signifikan antara ROI dengan harga saham
Ha : Secara parsial ada pengaruh signifikan antara ROI dengan harga saham
2. Menentukan tingkat signifikansi
Tingkat signifikansi menggunakan a = 5%.
3. Menentukan t hitung
Berdasarkan tabel diperoleh t hitung sebesar 5,964
4. Menentukan t tabel
Tabel distribusi t dicari pada a = 5% : 2 = 2,5% (uji 2 sisi) dengan derajat kebebasan (df) n-k-1 atau 18-2-1 = 15 (n ialah jumlah kasus dan k ialah jumlah variabel independen). Dengan pengujian 2 sisi (signifikansi = 0,025) hasil diperoleh untuk t tabel sebesar 2,131.
5. Kriteria Pengujian
Ho diterima kalau -t tabel £ t hitung £ t tabel
Ho ditolak kalau -t hitung < -t tabel atau t hitung > t tabel
6. Membandingkan thitung dengan t tabel
Nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak
7. Kesimpulan
Oleh sebab nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak, artinya secara parsial ada pengaruh signifikan antara ROI dengan harga saham. Makara dari kasus ini dapat disimpulkan bahwa secara parsial ROI kuat konkret terhadap harga saham pada perusahaan di BEJ.
Daftar Pustaka:
Arikunto, Suharsimi, “Prosedur Penelitian : Suatu Pendekatan Praktek”, Edisi Revisi V, Jakarta: PT Rineka Cipta, 2002.
Santoso, Singgih, 2000, Buku Latihan SPSS Statistik Parametrik. PT.ELEK Media Komputindo. Jakarta
Sekaran, Uma. 2006. Research Methods For Business: Metodologi Penelitian untuk Bisnis, Penerbit Salemba Empat.
Alhusin, Syahri, “Aplikasi Statistik Praktis dengan Menggunakan SPSS 10 for Windows”, Edisi Kedua, Yogyakarta: Graha Ilmu, 2003.
Priyatno, Duwi, “Mandiri Belajar SPSS”, Cetakan Ketiga, Yogyakarta: Media Kom, 2008.
Sugiyono, “Metode Penelitian Bisnis”, Bandung: CV. Alfabeta, 2007.
Ghazali, Imam, 2016, “Aplikasi Analisis Multivariat Dengan Program IBM SPSS 23”, Cetakan kedelapan, Universitas Diponegoro, Semarang.
Priyatno, Duwi, 2013, “Mandiri Belajar Analisis Data Dengan SPSS”, Yogyakarta: Media Kom.
Priyatno, Duwi, 2014, “SPSS 22 Pengolah Data Terpraktis”, Edisi 1, Yogyakarta: ANDI.
Santoso, Singgih, 2013, “Menguasai SPSS 21 di Era Informasi”. PT.ELEK Media Komputindo. Jakarta.
Sekaran, Uma, 2000. “Research Methods for Business, A Skill Building Approach”, New York: John Wiley n Sons
Related Posts